Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli.

نویسندگان

  • Chengjie G Huang
  • Zhubo D Zhang
  • Maurice J Chacron
چکیده

It is commonly assumed that neural systems efficiently process natural sensory input. However, the mechanisms by which such efficient processing is achieved, and the consequences for perception and behaviour remain poorly understood. Here we show that small conductance calcium-activated potassium (SK) channels enable efficient neural processing and perception of natural stimuli. Specifically, these channels allow for the high-pass filtering of sensory input, thereby removing temporal correlations or, equivalently, whitening frequency response power. Varying the degree of adaptation through pharmacological manipulation of SK channels reduced efficiency of coding of natural stimuli, which in turn gave rise to predictable changes in behavioural responses that were no longer matched to natural stimulus statistics. Our results thus demonstrate a novel mechanism by which the nervous system can implement efficient processing and perception of natural sensory input that is likely to be shared across systems and species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal SVD-based Precoding for Secret Key Extraction from Correlated OFDM Sub-Channels

Secret key extraction is a crucial issue in physical layer security and a less complex and, at the same time, a more robust scheme for the next generation of 5G and beyond. Unlike previous works on this topic, in which Orthogonal Frequency Division Multiplexing (OFDM) sub-channels were considered to be independent, the effect of correlation between sub-channels on the secret key rate is address...

متن کامل

Towards a unified theory of efficient, predictive and sparse coding

A central goal in theoretical neuroscience is to predict the response properties of sensory neurons from first principles. Several theories have been proposed to this end. “Efficient coding” posits that neural circuits maximise information encoded about their inputs. “Sparse coding” posits that individual neurons respond selectively to specific, rarely occurring, features. Finally, “predictive ...

متن کامل

SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review.

Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of n...

متن کامل

Dynamic temporal decorrelation: An information-theoretic and biophysical model of the functional role of the lateral geniculate nucleus

We investigate if well-known LGN ion channel properties can facilitate information-theoretic optimal coding through temporal decorrelation; and if so, whether the degree of temporal decorrelation can be adapted dynamically to ensure such optimization at longer time scales. Signi cant temporal decorrelation for time lags above 50 ms is achievable in a LGN cell model with inputs generated from na...

متن کامل

روشی جدید برای اختفای خطا در فریم‌های ویدئو با استفاده از شبکه‌ عصبی RBF

Transmission of compressed video over error prone channels may result in packet losses, which can degrade the image quality. Error concealment (EC) is an effective approach to reduce the degradation caused by the missed information. The conventional temporal EC techniques are always inefficient when the motions of the video object are irregular. In this paper, in order to overcome this problem,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016